top of page

Deep Learning

What type of projects or assignments help looking for?​

  • Assignment or Project Help

  • Online Training and Mentorship

  • New Idea or project

  • Existing project that need more resources

What is Deep Learning?

Deep Learning could be classified as subfield of machine learning involved with algorithms impressed by the structure and performance of the brain referred to as artificial neural networks

download (3).jpg

Recommender systems

Recommender systems are an important class of machine learning algorithms that offer "relevant" suggestions to users. Categorized as either collaborative filtering or a content-based system, check out how these approaches work along with implementations to follow from example code. Click on Learn more to know more.




A classifier is any algorithm that sorts data into labeled classes, or categories of information. A simple practical example are spam filters that scan incoming “raw” emails and classify them as either “spam” or “not-spam.” Classifiers are a concrete implementation of pattern recognition in many forms of machine learning.


Facial recognition

Facial recognition is the process of identifying or verifying the identity of a person using their face. It captures, analyzes, and compares patterns based on the person's facial details.The face capture process transforms analogue information (a face) into a set of digital information (data) based on the person's facial features.The face match process verifies if two faces belong to the same person



 TensorFlow is a free and open-source software library for dataflow and differentiable programming across a range of tasks. It is a symbolic math library and is also used for machine learning applications such as neural




Keras is  High-Level Deep learning Python library extensively used by Data-scientists when it comes to architect the neural networks for complex problems. Higher  level API means that Keras can act as front end while you can ask Tensor-flow or Theano to work as back end



LSTM stands for Short Term Long Term Memory. It is a model or an architecture that extends the memory of recurrent neural networks. Recurrent neural networks have “short-term memory” in that they use persistent past information for use in the current neural network. 

bottom of page